

Entwicklung von Plattform-übergreifenden Mobilanwendungen

Unter Nutzung von HTML 5 basierten Cross Development Werkzeugen und standardisierten Serviceschnittstellen

Clemens Düpmeier, Thorsten Schlachter

Institut für Angewandte Informatik (IAI)

Übersicht

- Einführung / Motivation
- Unterschiedliche Formen der Anwendungsentwicklung bei mobilen Geräten
- Cross Development mit
 - Javascript-basierten Framework
 - Unter Nutzung von REStful-Service Schnittstellen
 - Am Beispiel einer Umweltanwendung
- Fazit

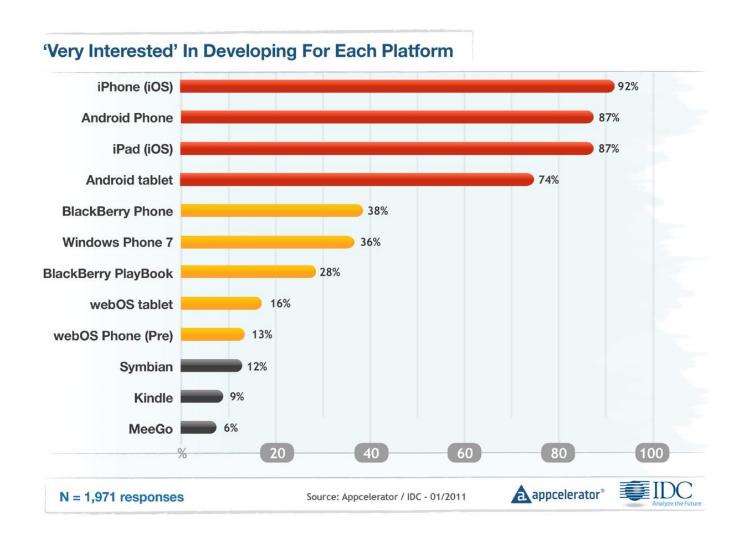
CES / MWC / CEBIT

Flut von neuen

Tablets

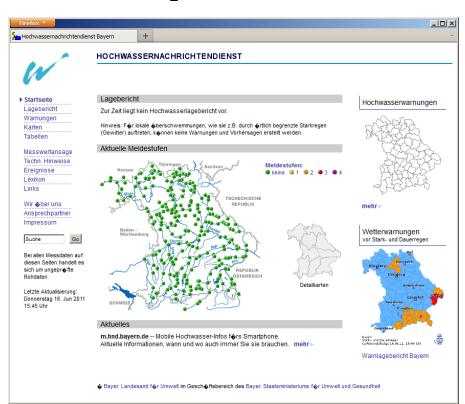
Smartphones

- **4**", 7", 10", ...
- Kombinationen von
 - Notebook + Tablet
 - Notebook + Smartphone
 - ...



Welche mobile Plattformen?

Möglichkeiten zur Entwicklung von Applikationen


- Erstellen einer klassischen Webanwendung für mobile Geräte
 - Webanwendung mit angepassten Design / Layout
 - Können Spezifika der mobilen Hardware nicht nutzen
- Entwicklung von nativen Anwendungen
 - Erlaubt beste Nutzung der jeweiligen Hardware
 - Bei Entwicklung funktional gleicher Anwendungen für verschiedene Plattformen sehr aufwändig
- Cross Development Umgebungen
 - Übersetzen Plattform-übergreifenden Code in native Apps für die jeweilige(n) Zielplattform(en)
 - Oft Kombination aus HTML 5 basierter Webanwendungsentwicklung und nativen Schnittstellen
 - Erlauben die Entwicklung einer Anwendung unter Nutzung nativer Eigenschaften

Entwicklungsmethode 1: Reine Webanwendung

Design und Layout für mobile Geräte optimieren

www.hnd.bayern.de

m.hnd.bayern.de

Zweite Methode: Native mobile Anwendungen (Apps)

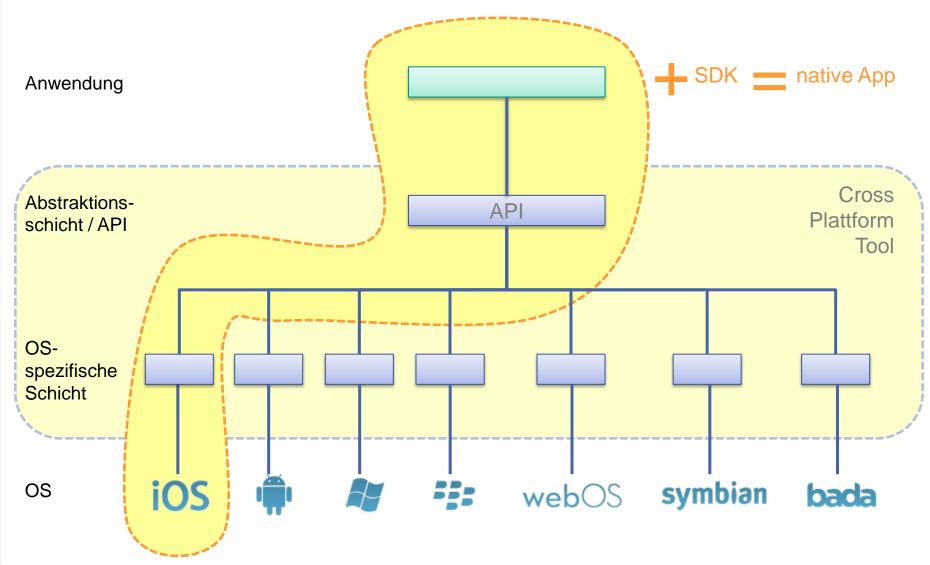
- Optimierte Benutzererfahrung (native UI-Elemente)
 - Multitouch-Touchscreenbedienung
 - Energiemanagement
 - Datendienste mit Caching von Daten (Offline-Nutzung)
- Alle Gerätefunktionalitäten nutzbar
 - Position (GPS, Funkzelle, Wifi)
 - Sensoren (Kamera, Mikro, Kompass,...)
 - Kommunikationsschnittstellen
 - Fkt. anderer Apps und Serviceschnittsstellen gemeinsam nutzbar (Addressbuch, Telefon, Kamera, Datendienste, Google-Maps)

Example: DB-Navigator – Zugfahrpläne (und Verspätungen ©)

- Vermarktbar über "Online App Märkte" ("stores", "markets")
 - Kostenlos, nicht-kostenlos, Abo- oder Mikrobezahlung
 - Sehr häufige Updates (Nutzer testet Versionen, gibt Feedback)
 - Verstärkte Integration in soziale Netzwerke (Nutzer-Engagement)

Vergleich von iOS und Android

- iOS (iPhone und iPad) Apple
 - Design und Plattform aus einem Guss (Apples Stärke)
 - Plattform sehr stark kontrolliert; Ziel ist es, nur beste Qualität zu liefern
 - Sehr restriktiv, was die Integration von Drittanbieter-Funktionalitäten angeht
 - Betriebssystem: Abgespeckter Mach Unix-Kernel
 - Haupt-Programmiersprache Objective-C
- Android Google
 - Design und Plattform entwickelt sich wesentlich chaotischer als bei iOS und sehr schnell → Problem der Fragmentierung
 - Plattform jedoch offener und eine Vielzahl von Beteiligten
 - Offen für Ergänzungen durch Fremdhersteller oder auch aus dem OpenSource-Bereich; Möglichkeiten zum Modding und für eigene ROMs
 - Betriebssystem: Linux-Kernel
 - Hauptprogrammiersprache: Java-Dialekt (läuft auf Dalvik-VM)
 - Sehr, sehr viele Gerätevarianten und Typen (nicht nur Tablets und Smartphones)


Funktionalitäten in etwa vergleichbar

- Komponenten-orientiertes Programmiermodell
 - Komponenten sind über Anwendungen hinweg lose miteinander koppelbar
- Aber auch Hardware-nahe Low-Level C-Schnittstellen zum Betriebssystem sind integrierbar
- Basis-Funktionalitäten
 - Standard-Betriebssystem-Dienste, wie Dateizugriff, Threading, USB-Unterstützung, etc.
 - Schnittstellen zu den Sensoren der Geräte: Kamera, Audio, GPS, Lage
 - Netzwerk- und Kommunikationsschnittstellen, Telefondienste
- Komponenten für UI-Entwicklung
- Höherwertige Komponenten
 - GPS + Kartendarstellung (Google Maps basiert)
 - Arbeiten mit Medien (Kamera, Audio, Mediendarstellung)
 - Datenbank (SQLite), XML, JSON
 - Zugriff auf Dienste im Internet, soziale Netzwerke, Google-Dienste
 - Notifikation, z.B. auch Push-Notifikation über Services

3. Cross-Plattform-Entwicklung: Prinzip

Cross-Plattform-Entwicklungsumgebungen

Tool / Hersteller	Progr. Language	Android (Java)	iOS (ObjC)	Win mobile (C#, C++)	Blackberry (Java)	Others	
alcheMo	Java	✓	✓	✓	×	BREW	
Appcelerator	JS	✓	✓	×	(✓)	-	
AppMatrix	JS, ObjC	✓	✓	×	✓	Windows Desktop	
Aqua	C(++), JS	✓	✓	(√ 6.x)	✓	Windows Desktop	
Bedrock	Java	✓	✓	✓	✓	Java ME, BREW, Palm, Symbian	
Celsius	Java	✓	✓	✓	✓	Java ME, Symbian	
MoSync	C(++), Lua HTML/ CSS	✓	✓	✓	(✓)	Java ME, Symbian	
NeoMAD	Java	✓	✓	✓	✓	Java ME	
PhoneGap	JS, HTML/CSS	✓	✓	✓ ✓		Symbian, Palm	
TotalCross	Java	✓	✓	(√ 6.x)	✓	Palm	

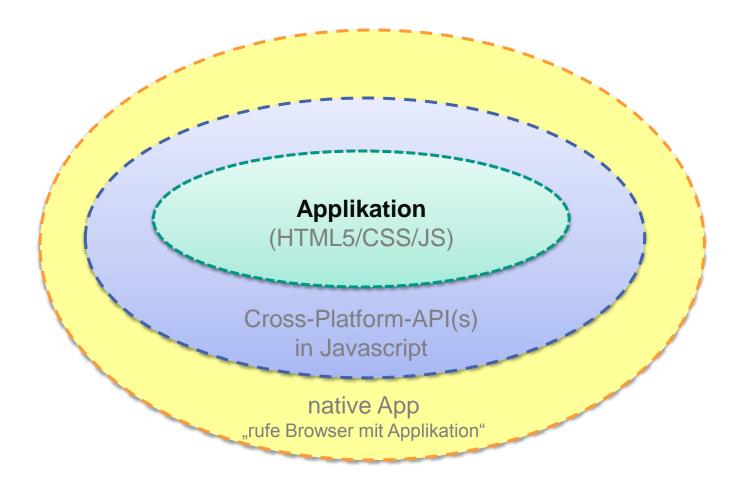
Frameworks für Cross-Plattform-Development mit HTML 5 / Javascript

- Hardware-/Komponentenzugriff
 - PhoneGap

- GUI-Abstraktion
 - Sencha Touch

- Konnektivität, Services, XML-Prozessierung
 - jQuery (mobile)
 - Leichter Zugriff auf RESTful-Services und generische Serviceschnittstellen z.B. Feed-API's

- Map Client
 - Google Maps
 - Open Layers / Legato



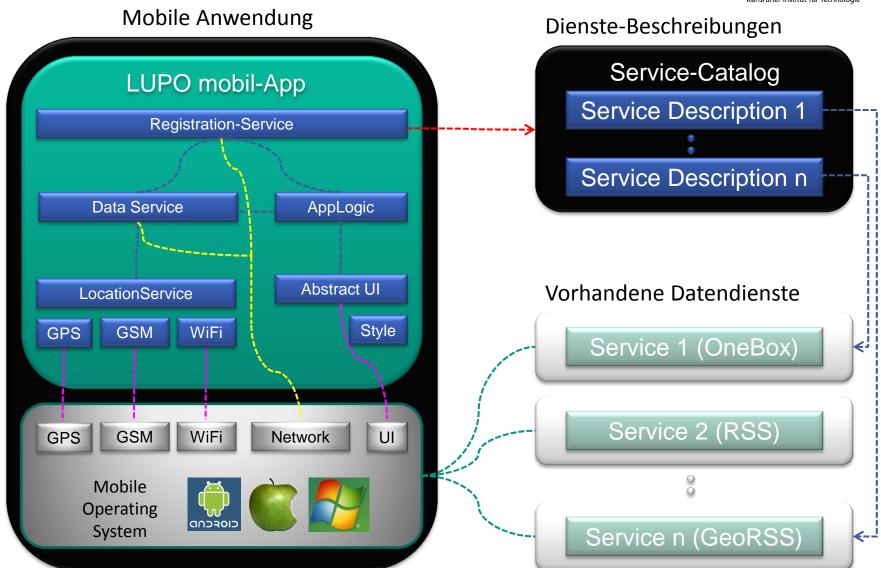
Webtechnologie-basierte Cross-Plattform Apps

Gerätefunktionen verfügbar bei PhoneGap

	iOS	iOS Phone 30S and newer	Android	084647	08.5x	08 60+	WHOS	⊕ wP7	Symbian	Bada
ACCELEROMETER	0	0	0	×	0	0	0	0	0	0
CAMERA	0	0	0	ж	0	0	0	0	0	0
COMPASS	ж	0	0	36	ж	ж	ж	0	36	0
CONTACTS	0	0	0	36	0	0	ж	0	0	0
FILE	0	0	0	×	0	0	ж	0	ж	ж
GEOLOCATION	0	0	0	0	0	0	0	0	0	0
MEDIA	0	0	0	96	36	ж	ж	0	ж	ж
NETWORK	0	0	0	0	0	0	0	0	0	0
NOTIFICATION (ALERT)	0	0	0	0	0	0	0	0	0	0
NOTIFICATION (SOUND)	0	0	0	0	0	0	0	0	0	0
NOTIFICATION (VIBRATION)	0	0	0	0	0	0	0	0	0	0
STORAGE	0	0	0	30	0	0	0	0	0	ж

Vorteile gegenüber reiner Webanwendung

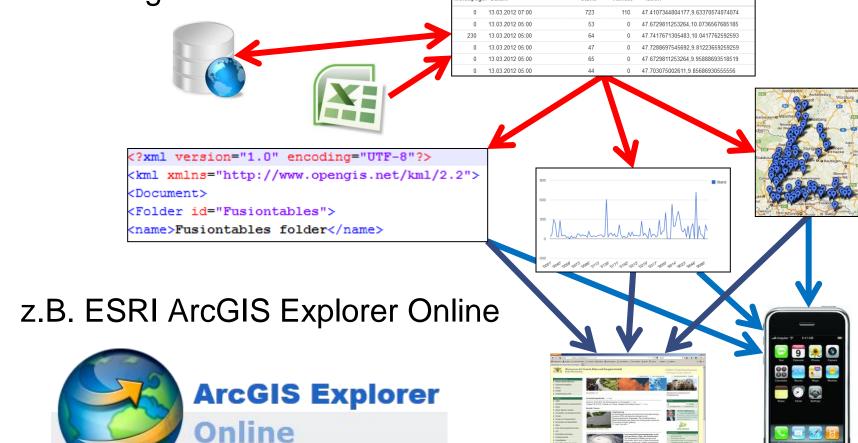
- Zugriff auf viele Gerätekomponenten und -hardware 🗸
 - App unterstützt auch Funktionalitäten, wie Energiemanagement
- "Look&Feel" (ähnlich) einer nativen Anwendung
- Offline-Fähigkeit
 - Daten sammeln ✓
 - Mediadaten auf Dateisystem speichern (PhoneGap)
 - Sach-/Formular-Daten in SQL-DB (PhoneGap)
 - Offline-Karten?
 - Google Maps (derzeit nur mit Google-Maps-App) Wms2G
 - wms2go


Beispiel LUPO mobil – Mobiles Frontend zum Umweltportal Baden-Württemberg (LUPO)

- Bereitstellung von Umweltdaten und Informationen über RESTful-Serviceschnittstellen
 - Nutzung von RESTful-Serviceschnittstellen
 - Bereitstellung der Daten und Informationen
 - über das Portal selbst
 - zugehörige Web-basierte Fachinformationssysteme
 - oder über Clouddienste
 - Open (Governmental) Data Philosophie
 - Mashup-Bildung der Daten im Portal wird ergänzt durch Serviceorientierte Schnittstellen und mobilen Frontend-Anwendungen
- Programmierung der Frontend-App mit Cross Development Entwicklungsumgebung (Phonegap + Zusätze)

LUPO mobil – Idee

Nutzung von Cloud-Diensten (1)

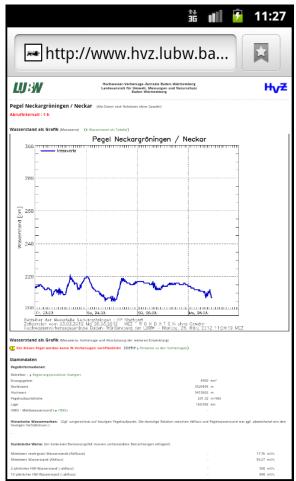


- Cloud-Dienste zur Bereitstellung von Daten
 - Aufbereitung von Inhalten
 - Reduktion, Aggregation, Filterung, ...
 - Bereitstellung in verschiedenen (maschinell verarbeitbaren)
 Formaten
 - Geodaten/Karten, Diagramme, Tabellen, Media, Text
 - Verfügbarkeit, Performanz
 - Entlastung von Fachanwendungen und Servern, 7/24-Betrieb
- Cloud-Dienste zum Sammeln von Daten
 - Trennung von "Rohdaten" und qualitätsgesicherten Daten
 - Zugriff über API und Daten-Schnittstellen
 - Verfügbarkeit, Performanz

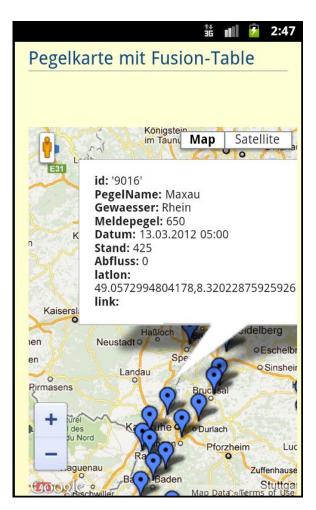
Nutzung von Cloud-Diensten (2)

z.B. Google Fusion Tables

Der LUPO mobil-Prototyp (1)



Der LUPO mobil-Prototyp (2)



Der LUPO mobil-Prototyp (3)

Danke für die Aufmerksamkeit!

Fragen?

Anmerkungen?

