
SSL implementieren –
aber sicher!
Karlsruher Entwicklertag 2014
21.05.2014

Dr. Yun Ding



SSL in the news

20142011 2012

BEAST

Compromised CAs

CRIME Lucky 13

RC4 biases

BREACH

DRBG Backdoor

2013

Apple goto fail

GnuTLS goto

OpenSSL HeartBleed



SSL in scientific publications

20132012

“The Most Dangerous Code in
the World: Validating SSL
Certificates …”

“Why Eve and Mallory Love
Android: An Analysis of
Android SSL (In)Security”

“Rethinking SSL
Development
in an Applied
World”



Apps vulnerable to MITM

14%

iOS Apps

98 out of 697 Apps

8%

Android Apps

1,074 out of 13,500 Apps



Layers of SSL-based applications

Hash Encryption Authentication

Cipher
Suites

Secure
Protocols

Renegotiation Compression

OpenSSLGnuTLS JSSEApple Secure
Transport

Apache
HttpClient

cURL PhoneGap MKNetworkKit

Random
Number
Generators

Banking Shopping Messaging BrowserApplication

Middleware/
Wrappers

SSL Libraries

SSL Protocols

Cryptographic
Primitives

Human



How does SSL work?

Client Server

Encrypted Data Communication

Handshake: Key Exchange

Copyright: http://openclipart.org/image/800px/svg_to_png/33457/Padlock-gold.png
gvictoria, bigstock.com, [2009] Joerg Habermeier, bigstock.com, Scanrail, bigstock.com



Trick user not to encrypt SSL stripping
Predict the key DRBG backdoor
Trick user to use attacker’s key Apple goto fail, GnuTLS goto,MITM
Trick server to expose keys OpenSSL Heartbleed
Perform cryptographic analysis to
decrypt

RC4 biases, Lucky13, CRIME,
BEAST, Breach

How does SSL break?

Copyright: © 2012 dny3d, bigstock.com, Scanrail, bigstock.com



SSL relies on Trust in Certificates …

Trusted Root CA Cert

Subject: RootCA
Public KeyRootCA

Sub CA Cert

Subject: SubCA
Public KeySubCA

Server Cert

Subject: Server
Public KeyServer

sign sign

sign



SSL relies on Valid Certificates

1. Make sure certificate validation is not turned off!
2. Verify the certificate is valid: not expired, not revoked
3. Validate “Chain of Trust”
4. Don’t accept self-signed certificates
5. Make sure hostname validation is set



What went wrong

w Insecure coding
● Skipped or broken certificate validation

w Badly designed APIs
● Expose low-level SSL protocol details, complex options
● Complex relationship between return values and error

status
● Unsafe defaults (+missing warning in API Doc)

w Delegate responsibility to application developers

Human

Application

Middleware/
Wrappers

SSL Libraries

SSL Protocols

Cryptographic
Primitives



Default behavior in SSL lib. & wrappers

Libraries/Wrappers Chain of Trust Hostname Verification

OpenSSL ✔ ✗

GnuTLS ✔ ✔

CyaSSL ✔ ✗

JSSE
SSLSocketFactory
HttpsURLConnection

✔
✔

✗
✔

Apache
HttpClient 3.*
HttpClient 4.*

✔
✔

✗
✔

Python
ssl module ✔ ✗



What went wrong

w Lack of understanding of how SSL works and
breaks

w Misinterpretation of manifold SSL parameters &
options

w Delegate responsibility to end users with warnings
w “Security gets in the way”

Human

Application

Middleware/
Wrappers

SSL Libraries

SSL Protocols

Cryptographic
Primitives



When Security gets in the way ...
Override (secure) standard certificate validation
w disable or break certificate validation
w disabled in development & forget to remove in production



Customized Trust Manager in Java



Hostname Verification in HttpClient (4.3)

w Skip hostname verification: communicate with another host
w Customization to skip hostname verification

new SSLConnectionSocketFactory(sslContext, new AllowAllHostnameVerifier())

X509HostnameVerifier

AbstractVerifier

AllowAllHostnameVerifier BrowserCompatHostnameVerifier

org.apache.http.conn.ssl.
SSLConnectionSocketFactory

uses

implements



Decouple test and production code

w Don’t hardcode insecure certificate validation (and forget)
w Use best practices in software architecture for decoupling

● Abstract Factory Design Pattern
● Dependency Injection, configuration instead of programming



Customization for more Security!

w SSL Certificate or Public Key Pinning
● Whitelist expected Certificates or Public Keys
● Pre-existing binding between the server and its certificate/public key

Sample code available on OWASP
https://www.owasp.org/index.php/Certificate_and_Public_Key_Pinning#Examples_of_Pinning



Secure SSL configuration

w Use secure protocols: TLS v1.2, TLS v1.1, TLS v1.0
w Use secure cipher suites

● Support authentication & encryption ≥ 128 bit Avoid
● Use ECDHE for forward secrecy
● Avoid anonymous DH, null cipher, RC4, 3DES

w RSA and DSA key must be ≥ 2048 bits
w Disable client-initiated Renegotiation
w Disable TLS compression



Secure SSL configuration

w Avoid mixed TLS and non-TLS content
w Secure cookies
w Deploy HTTP Strict Transport Security (HSTS)
w Prevent caching of sensitive content

“SSL/TLS Deployment Best Practices” of Qualys SSL Labs
https://www.ssllabs.com/downloads/SSL_TLS_Deployment_Best_Practices_1.3.pdf

OWASP “Transport Layer Protection Cheat Sheet”
https://owasp.org/index.php/Transport_Layer_Protection_Cheat_Sheet

Human

Application

Middleware/
Wrappers

SSL Libraries

SSL Protocols

Cryptographic
Primitives



Test SSL

w Perform adversarial testing: abnormal certificates, MITM
attacking tools (sslsniff, mitmproxy)

w Testing for SSL/TLS ciphers, protocols, keys and know
vulnerabilities (e.g., BEAST, CRIME, Heartbleed)

• https://www.owasp.org/index.php/Testing_for_Weak_SSL/TSL_Ciphers,_Insufficient_Transport_Layer_Protectio
n_%28OWASP-EN-002%29

• http://thoughtcrime.org/software/sslsniff/
• http://mitmproxy.org/



Tools: Creating Keys and Certs

w Java Keytool
w OpenSSL: powerful, but complex
w Xca: http://sourceforge.net/projects/xca/

● Based on OpenSSL
● Provides a Graphical User Interface (GUI)

w gnoMint: http://gnomint.sourceforge.net
● Based on GnuTLS
● Provides GUI and command line support



Tools: Creating Keys and Certs with xca



Securely implement SSL!

w Understand how SSL works and breaks
w Use SSL libraries and middleware securely

● Don’t rely on default settings of SSL libraries and middleware/wrappers
● Look out for badly designed SSL API (return value, error status)

w Perform certificate validation properly
● Verify the certificate is valid: not expired, not revoked
● Validate “Chain of Trust”
● Don’t accept self-signed certificates
● Make sure hostname validation is set

w Decouple insecure customized certificate handling from
production code

w Test for insecure SSL configurations



Engineering SSL is
System Security Engineering

usability

psychology

secure coding

open source
policies



References

w M. Georgiev, S. Iyengar, S. Jana et al., “The Most Dangerous Code in the World:
Validating SSL Certificates in Non-Browser Software”, 2012,
http://www.cs.utexas.edu/~shmat/shmat_ccs12.pdf

w S. Fahl, M. Harbach, L. Baumgaertner and B. Freisleben, “Why Eve and Mallory Love
Android: An Analysis of Android SSL (In)Security”, 2012, http://www2.dcsec.uni-
hannover.de/files/android/p50-fahl.pdf

w S. Fahl, M. Harbach, H. Perl et al., “Rethinking SSL Development in an Applied World”,
2013, http://android-ssl.org/files/p49.pdf

w Comparison of TLS implementations
http://en.wikipedia.org/wiki/Comparison_of_TLS_implementations



Copyright: © Kotist, bigstock.com



Secorvo Security Consulting GmbH
Ettlinger Straße 12-14
76137 Karlsruhe

Tel. +49 721 255171-0
Fax +49 721 255171-100
info@secorvo.de
www.secorvo.de


