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SSL in the news
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SSL in scientific publications
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“The Most Dangerous Code in
the World: Validating SSL
Certificates …”

“Why Eve and Mallory Love
Android: An Analysis of
Android SSL (In)Security”

“Rethinking SSL
Development
in an Applied
World”



Apps vulnerable to MITM
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1,074 out of 13,500 Apps



Layers of SSL-based applications
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How does SSL work?

Client Server

Encrypted Data Communication

Handshake: Key Exchange

Copyright: http://openclipart.org/image/800px/svg_to_png/33457/Padlock-gold.png
gvictoria, bigstock.com, [2009] Joerg Habermeier, bigstock.com, Scanrail, bigstock.com



Trick user not to encrypt SSL stripping
Predict the key DRBG backdoor
Trick user to use attacker’s key Apple goto fail, GnuTLS goto,MITM
Trick server to expose keys OpenSSL Heartbleed
Perform cryptographic analysis to
decrypt

RC4 biases, Lucky13, CRIME,
BEAST, Breach

How does SSL break?

Copyright: © 2012 dny3d, bigstock.com, Scanrail, bigstock.com



SSL relies on Trust in Certificates …

Trusted Root CA Cert
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SSL relies on Valid Certificates

1. Make sure certificate validation is not turned off!
2. Verify the certificate is valid: not expired, not revoked
3. Validate “Chain of Trust”
4. Don’t accept self-signed certificates
5. Make sure hostname validation is set



What went wrong

w Insecure coding
● Skipped or broken certificate validation

w Badly designed APIs
● Expose low-level SSL protocol details, complex options
● Complex relationship between return values and error

status
● Unsafe defaults (+missing warning in API Doc)

w Delegate responsibility to application developers
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Default behavior in SSL lib. & wrappers

Libraries/Wrappers Chain of Trust Hostname Verification

OpenSSL ✔ ✗

GnuTLS ✔ ✔

CyaSSL ✔ ✗

JSSE
SSLSocketFactory
HttpsURLConnection

✔
✔

✗
✔

Apache
HttpClient 3.*
HttpClient 4.*

✔
✔

✗
✔

Python
ssl module ✔ ✗



What went wrong

w Lack of understanding of how SSL works and
breaks

w Misinterpretation of manifold SSL parameters &
options

w Delegate responsibility to end users with warnings
w “Security gets in the way”
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When Security gets in the way ...
Override (secure) standard certificate validation
w disable or break certificate validation
w disabled in development & forget to remove in production



Customized Trust Manager in Java



Hostname Verification in HttpClient (4.3)

w Skip hostname verification: communicate with another host
w Customization to skip hostname verification

new SSLConnectionSocketFactory(sslContext, new AllowAllHostnameVerifier())

X509HostnameVerifier

AbstractVerifier

AllowAllHostnameVerifier BrowserCompatHostnameVerifier

org.apache.http.conn.ssl.
SSLConnectionSocketFactory

uses

implements



Decouple test and production code

w Don’t hardcode insecure certificate validation (and forget)
w Use best practices in software architecture for decoupling

● Abstract Factory Design Pattern
● Dependency Injection, configuration instead of programming



Customization for more Security!

w SSL Certificate or Public Key Pinning
● Whitelist expected Certificates or Public Keys
● Pre-existing binding between the server and its certificate/public key

Sample code available on OWASP
https://www.owasp.org/index.php/Certificate_and_Public_Key_Pinning#Examples_of_Pinning



Secure SSL configuration

w Use secure protocols: TLS v1.2, TLS v1.1, TLS v1.0
w Use secure cipher suites

● Support authentication & encryption ≥ 128 bit Avoid
● Use ECDHE for forward secrecy
● Avoid anonymous DH, null cipher, RC4, 3DES

w RSA and DSA key must be ≥ 2048 bits
w Disable client-initiated Renegotiation
w Disable TLS compression



Secure SSL configuration

w Avoid mixed TLS and non-TLS content
w Secure cookies
w Deploy HTTP Strict Transport Security (HSTS)
w Prevent caching of sensitive content

“SSL/TLS Deployment Best Practices” of Qualys SSL Labs
https://www.ssllabs.com/downloads/SSL_TLS_Deployment_Best_Practices_1.3.pdf

OWASP “Transport Layer Protection Cheat Sheet”
https://owasp.org/index.php/Transport_Layer_Protection_Cheat_Sheet
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Test SSL

w Perform adversarial testing: abnormal certificates, MITM
attacking tools (sslsniff, mitmproxy)

w Testing for SSL/TLS ciphers, protocols, keys and know
vulnerabilities (e.g., BEAST, CRIME, Heartbleed)

• https://www.owasp.org/index.php/Testing_for_Weak_SSL/TSL_Ciphers,_Insufficient_Transport_Layer_Protectio
n_%28OWASP-EN-002%29

• http://thoughtcrime.org/software/sslsniff/
• http://mitmproxy.org/



Tools: Creating Keys and Certs

w Java Keytool
w OpenSSL: powerful, but complex
w Xca: http://sourceforge.net/projects/xca/

● Based on OpenSSL
● Provides a Graphical User Interface (GUI)

w gnoMint: http://gnomint.sourceforge.net
● Based on GnuTLS
● Provides GUI and command line support



Tools: Creating Keys and Certs with xca



Securely implement SSL!

w Understand how SSL works and breaks
w Use SSL libraries and middleware securely

● Don’t rely on default settings of SSL libraries and middleware/wrappers
● Look out for badly designed SSL API (return value, error status)

w Perform certificate validation properly
● Verify the certificate is valid: not expired, not revoked
● Validate “Chain of Trust”
● Don’t accept self-signed certificates
● Make sure hostname validation is set

w Decouple insecure customized certificate handling from
production code

w Test for insecure SSL configurations



Engineering SSL is
System Security Engineering

usability

psychology

secure coding

open source
policies
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