# SSL implementieren – aber sicher!

Karlsruher Entwicklertag 2014 21.05.2014

Dr. Yun Ding



#### SSL in the news



### SSL in scientific publications



"Why Eve and Mallory Love Android: An Analysis of Android SSL (In)Security"

## Apps vulnerable to MITM



## Layers of SSL-based applications

| Human                       | This Connection is Untrusted         You have asked Firefox to connect securely to       , but we can't confirm that your connection is secure.         Normally, when you try to connect securely, sites will present trusted identification to prove that you are going to the right place. However, this site's identity can't be verified. |                           |               |                    |  |
|-----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|---------------|--------------------|--|
| Application                 | Banking                                                                                                                                                                                                                                                                                                                                        | Shopping                  | Messaging     | Browser            |  |
| Middleware/<br>Wrappers     | Apache<br>HttpClient                                                                                                                                                                                                                                                                                                                           | cURL                      | PhoneGap      | neGap MKNetworkKit |  |
| SSL Libraries               | GnuTLS                                                                                                                                                                                                                                                                                                                                         | Apple Secure<br>Transport | OpenSSL       | JSSE               |  |
| SSL Protocols               | Secure<br>Protocols                                                                                                                                                                                                                                                                                                                            | Cipher<br>Suites          | Renegotiation | Compression        |  |
| Cryptographic<br>Primitives | Random<br>Number<br>Generators                                                                                                                                                                                                                                                                                                                 | Hash                      | Encryption    | Authentication     |  |

#### How does SSL work?



Copyright: <u>http://openclipart.org/image/800px/svg\_to\_png/33457/Padlock-gold.png</u> gvictoria, bigstock.com, [2009] Joerg Habermeier, bigstock.com, Scanrail, bigstock.com

#### How does SSL break?



| Trick user not to encrypt                 | SSL stripping                             |
|-------------------------------------------|-------------------------------------------|
| Predict the key                           | DRBG backdoor                             |
| Trick user to use attacker's key          | Apple goto fail, GnuTLS goto,MITM         |
| Trick server to expose keys               | OpenSSL Heartbleed                        |
| Perform cryptographic analysis to decrypt | RC4 biases, Lucky13, CRIME, BEAST, Breach |

Copyright: © 2012 dny3d, bigstock.com, Scanrail, bigstock.com

#### SSL relies on Trust in Certificates ...



## SSL relies on Valid Certificates

- 1. Make sure certificate validation is not turned off!
- 2. Verify the certificate is valid: not expired, not revoked
- 3. Validate "Chain of Trust"
- 4. Don't accept self-signed certificates
- 5. Make sure hostname validation is set

#### What went wrong

- Insecure coding
  - Skipped or broken certificate validation
- Badly designed APIs
  - Expose low-level SSL protocol details, complex options
  - Complex relationship between return values and error status
  - Unsafe defaults (+missing warning in API Doc)
- Delegate responsibility to application developers

Human Application Middleware/ Wrappers SSL Libraries SSL Protocols Cryptographic Primitives

## Default behavior in SSL lib. & wrappers

| Libraries/Wrappers                             | Chain of Trust        | Hostname Verification |
|------------------------------------------------|-----------------------|-----------------------|
| OpenSSL                                        | <ul> <li></li> </ul>  | ×                     |
| GnuTLS                                         | <ul> <li></li> </ul>  | <ul> <li></li> </ul>  |
| CyaSSL                                         | <ul> <li></li> </ul>  | ×                     |
| JSSE<br>SSLSocketFactory<br>HttpsURLConnection |                       | ×                     |
| Apache<br>HttpClient 3.*<br>HttpClient 4.*     |                       | ×<br>•                |
| Python<br>ssl module                           | <ul> <li>✓</li> </ul> | ×                     |

### What went wrong

- Lack of understanding of how SSL works and breaks
- Misinterpretation of manifold SSL parameters & options
- Delegate responsibility to end users with warnings
- "Security gets in the way"

| Human                       |
|-----------------------------|
| Application                 |
| Middleware/<br>Wrappers     |
| SSL Libraries               |
| SSL Protocols               |
| Cryptographic<br>Primitives |

## When Security gets in the way ...

Override (secure) standard certificate validation

- disable or break certificate validation
- disabled in development & forget to remove in production

## **Customized Trust Manager in Java**



| SSLTest.ja | va 🔀 🕖 DisableValidationTrustManager.java                                                                         |  |  |  |  |  |  |
|------------|-------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| į          | TrustManager tm[] = {new <u>DisableValidationTrustManager()</u> };                                                |  |  |  |  |  |  |
|            | <pre>SSLContext context; try {    context = SSLContext.getInstance("TLS");    context.init(null, tm, null);</pre> |  |  |  |  |  |  |
|            |                                                                                                                   |  |  |  |  |  |  |
| 2          | <pre>} catch (NoSuchAlgorithmException e) {     e.printStackTrace();</pre>                                        |  |  |  |  |  |  |
|            | <pre>{ catch (KeyManagementException e) {     e.printStackTrace();</pre>                                          |  |  |  |  |  |  |
|            |                                                                                                                   |  |  |  |  |  |  |

## Hostname Verification in HttpClient (4.3)



Skip hostname verification: communicate with another host

#### Customization to skip hostname verification

new SSLConnectionSocketFactory(sslContext, new AllowAllHostnameVerifier())

#### Decouple test and production code

- Don't hardcode insecure certificate validation (and forget)
- Use best practices in software architecture for decoupling
  - Abstract Factory Design Pattern
  - Dependency Injection, configuration instead of programming



## Customization for more Security!

- SSL Certificate or Public Key Pinning
  - Whitelist expected Certificates or Public Keys
  - Pre-existing binding between the server and its certificate/public key

Sample code available on OWASP https://www.owasp.org/index.php/Certificate\_and\_Public\_Key\_Pinning#Examples\_of\_Pinning

## Secure SSL configuration

- Use secure protocols: TLS v1.2, TLS v1.1, TLS v1.0
- Use secure cipher suites
  - Support authentication & encryption ≥ 128 bit Avoid
  - Use ECDHE for forward secrecy
  - Avoid anonymous DH, null cipher, RC4, 3DES
- RSA and DSA key must be  $\geq$  2048 bits
- Disable client-initiated Renegotiation
- Disable TLS compression

## Secure SSL configuration

- Avoid mixed TLS and non-TLS content
- Secure cookies
- Deploy HTTP Strict Transport Security (HSTS)
- Prevent caching of sensitive content

|    | Human                       |
|----|-----------------------------|
|    | Application                 |
| S) | Middleware/<br>Wrappers     |
|    | SSL Libraries               |
|    | SSL Protocols               |
|    | Cryptographic<br>Primitives |
|    |                             |

"SSL/TLS Deployment Best Practices" of Qualys SSL Labs https://www.ssllabs.com/downloads/SSL\_TLS\_Deployment\_Best\_Practices\_1.3.pdf

OWASP "Transport Layer Protection Cheat Sheet" https://owasp.org/index.php/Transport\_Layer\_Protection\_Cheat\_Sheet

## Test SSL

- Perform adversarial testing: abnormal certificates, MITM attacking tools (sslsniff, mitmproxy)
- Testing for SSL/TLS ciphers, protocols, keys and know vulnerabilities (e.g., BEAST, CRIME, Heartbleed)

| Ξ٩ | Protocols                                                                                                                                                                                                                            |                   |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
|    | TLS 1.2                                                                                                                                                                                                                              | No                |
|    | TLS 1.1                                                                                                                                                                                                                              | No                |
|    | TLS 1.0                                                                                                                                                                                                                              | Yes               |
|    | SSL 3                                                                                                                                                                                                                                | Yes               |
|    | SSL 2                                                                                                                                                                                                                                | No                |
|    |                                                                                                                                                                                                                                      |                   |
| Ð  | Cipher Suites (SSL 3+ suites in server-preferred order, then SSL 2 suites where used)<br>TLS_RSA_WITH_RC4_128_SHA (0x5)                                                                                                              | 128               |
| 3  | Cipher Suites (SSL 3+ suites in server-preferred order, then SSL 2 suites where used) TLS_RSA_WITH_RC4_128_SHA(0x5) TLS_RSA_WITH_RC4_128_MD5(0x4)                                                                                    | 128               |
| 3  | Cipher Suites (SSL 3+ suites in server-preferred order, then SSL 2 suites where used) TLS_RSA_WITH_RC4_128_SHA (0x5) TLS_RSA_WITH_RC4_128_MD5 (0x4) TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA (0xc013) ECDH 256 bits (eq. 3072 bits RSA) FS | 128<br>128<br>128 |

- <u>http://thoughtcrime.org/software/sslsniff/</u>
- http://mitmproxy.org/

## Tools: Creating Keys and Certs

- Java Keytool
- OpenSSL: powerful, but complex
- Xca: <u>http://sourceforge.net/projects/xca/</u>
  - Based on OpenSSL
  - Provides a Graphical User Interface (GUI)
- gnoMint: <u>http://gnomint.sourceforge.net</u>
  - Based on GnuTLS
  - Provides GUI and command line support

## Tools: Creating Keys and Certs with xca

|                                    | )           | ( Certificate an | d Key <mark>manag</mark> e | ment        |          |                   |   | New Certificate   |
|------------------------------------|-------------|------------------|----------------------------|-------------|----------|-------------------|---|-------------------|
| to x500 Cortificato                |             |                  |                            |             |          | Demunda Se        |   | Export            |
| te x303 Certificate                | C. hime     | E a serie se     | V                          | Netzerez    |          | Contractive Total |   | Import            |
| Distinguished name                 | rce Subject | Extensions       | Key usage                  | Netscape    | Advanced |                   |   | Show Details      |
| Internal name                      |             |                  | organization               | Name        |          |                   |   | Delete            |
| countryName<br>stateOrProvinceName |             |                  | organization               | ialUnitName |          |                   |   | Import PKCS#12    |
| localityName                       |             |                  | emailAddres                | s           |          |                   |   | Import PKCS#7     |
| Туре                               |             |                  | Content                    |             |          | Add               |   | Plain View        |
|                                    |             |                  |                            |             |          | Delete            | Ì | Zassmineeta       |
|                                    |             |                  |                            |             |          |                   |   | 2 02 Mustime Jime |

## Securely implement SSL!

- Understand how SSL works and breaks
- Use SSL libraries and middleware securely
  - Don't rely on default settings of SSL libraries and middleware/wrappers
  - Look out for badly designed SSL API (return value, error status)
- Perform certificate validation properly
  - Verify the certificate is valid: not expired, not revoked
  - Validate "Chain of Trust"
  - Don't accept self-signed certificates
  - Make sure hostname validation is set
- Decouple insecure customized certificate handling from production code
- Test for insecure SSL configurations

## Engineering SSL is System Security Engineering



#### References

- M. Georgiev, S. Iyengar, S. Jana et al., "The Most Dangerous Code in the World: Validating SSL Certificates in Non-Browser Software", 2012, <u>http://www.cs.utexas.edu/~shmat/shmat\_ccs12.pdf</u>
- S. Fahl, M. Harbach, L. Baumgaertner and B. Freisleben, "Why Eve and Mallory Love Android: An Analysis of Android SSL (In)Security", 2012, <u>http://www2.dcsec.uni-hannover.de/files/android/p50-fahl.pdf</u>
- S. Fahl, M. Harbach, H. Perl et al., "Rethinking SSL Development in an Applied World", 2013, <u>http://android-ssl.org/files/p49.pdf</u>
- Comparison of TLS implementations
   <u>http://en.wikipedia.org/wiki/Comparison\_of\_TLS\_implementations</u>





security consulting

Secorvo Security Consulting GmbH Ettlinger Straße 12-14 76137 Karlsruhe

Tel. +49 721 255171-0 Fax +49 721 255171-100 info@secorvo.de www.secorvo.de